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First-principles phase equilibria calculations often overestimate an order-disorder transition
temperature due to the neglect of local lattice distortion effects originated from the mixture
of elements of different atomic sizes. The lattice vibration effects introduced through the
Debye-Grüneisen theory within the quasi-harmonic approximation has proven to be quite
effective in circumventing the inconveniences. With the preferential enhancement of the stability
of a disordered phase by introducing the lattice vibration effects, the transition temperature was
reduced considerably. In order to gain further insight into the lattice vibration effects, a sys-
tematic investigation of the vibrational free energy of the Debye-Grüneisen theory is attempted
on the two-dimensional square lattice which constitutes a prototype study prior to the first-
principles calculations on realistic alloy systems. A particular focus of the present study is placed
on the effects of Debye temperatures of constituent phases on the transition temperature. It is
shown that lattice softening by lattice vibration stabilizes the disordered phase by reducing the
energy expended to accommodate atoms of different sizes, which is manifested by the reduction
of the curvature of the atomic potentials. It is, however, predicted that an opposite case can also
take place. When the Debye temperature of an ordered phase is lower than that of the pure
metals, the ordered phase is more stabilized and the inclusion of the lattice vibration effects in
the free energy raises the resultant transition temperature.

Keywords cluster variation method, Debye-Grüneisen theory,
lattice softening, lattice vibration

1. Introduction

First-principles calculation of a phase diagram[1] with the
cluster variation method (CVM)[2] to evaluate entropy has
attracted broad attention, and recent efforts have been
directed toward expanding the applicability to lower
symmetry systems as well as multicomponent alloys. One
of the serious deficiencies of the CVM-based first-principles
calculations is the overestimation of the order-disorder
transition temperature, i.e. the overstabilization of the

ordered phase. This originates from the neglect of local
lattice distortion effects, for the local lattice relaxation alters
the crystal symmetry which makes a conventional entropy
formula based on CVM not fully justified. Without the local
lattice relaxation, atoms of different sizes in a disordered
phase encounter one another more frequently and this raises
the internal energy. Thus, the disordered phase is destabi-
lized with respect to the ordered phase.

Two schemes have been proposed within CVM to
circumvent such an inconvenience. One is to introduce the
relaxation explicitly into the free energy formula through a
revised entropy expression termed continuous displacement
cluster variation method (CDCVM).[3-8] However, the
application of CDCVM is still at its infancy and is limited
to rather simple systems such as two-dimensional or simple
cubic lattices. The details of the CDCVM and comparison
with other theoretical methods such as the one proposed by
Zunger[9] will be discussed in the separate issue. The other
one is to induce lattice softening through lattice thermal
vibration effects such that the atoms of different sizes can be
accommodated in the lattice without expending much energy
at elevated temperatures. In fact, the lattice vibration effects
can be rather easily introduced into the theoretical frame-
work of the CVM-based first-principles calculations employ-
ing the procedure proposed by Moruzzi et al.[10] and it has
been proved[11,12] that the overestimated transition temper-
atures are reduced to approach the experimental values.

However, the systems investigated using such a scheme
are still limited to Fe-based alloys, Fe-Ni, Fe-Pd, and
Fe-Pt,[1,11,12] and various roles played by the lattice
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vibration effects in the phase equilibria calculations are not
fully grasped yet. Hence, it is deemed necessary to carry out
a systematic study of the lattice vibration effects on the
phase equilibria by examining lattice thermal properties of
the constituent phases. For this, the present study focuses on
binary phase equilibria in a two-dimensional square lattice
in which a single ordered phase appears. We investigate how
different combinations of thermal properties of the constit-
uent phases (pure and ordered phases) affect the order-
disorder transition temperature. In particular, the effects of
Debye temperature of the constituent phases are studied.

The organization of the present report is as follows. In the
next section, the configurational free energy within the pair
approximation of the CVM is introduced for the sake of
completeness. In the third section, the Debye-Grüneisen
model proposed by Moruzzi et al. is briefly reviewed and it is
discussed how the lattice vibration effects are renormalized
in the pair interaction energies. In order to avoid unnecessary
complications arising from various parameters to describe
the vibrational free energy, normalized pair interaction
energies are introduced in the fourth section. In the final
section, calculated results are demonstrated and discussed.

2. Configurational Free Energy Within Cluster
Variation Method

In the ordered phase considered in the present study, A
and B atoms are arranged alternatively in the nearest
neighbor lattice points. The entire lattice points are divided
into two sub-lattices a and b, where a(b)-sublattice is
defined as the preferential lattice point for A(B) atom. Then,
the long range order parameter (LRO), g, is conveniently
defined as

g ¼ xa
A � xb

A

xA
ðEq 1Þ

where xA is the mole fraction of A atom in the entire lattice
and xc

A is the fraction of A atom in the sublattice designated
by c. The stoichiometric composition of the present ordered
phase is 1:1, but the LRO parameter, g, defined in Eq 1
provides unity for the maximum ordered state at any
composition.

Although the introduction of the lattice thermal vibration
effects into the higher order approximation of the CVM is
performed in a straightforward manner,[1,11,12] for the sake
of simplicity, pair approximation within the CVM is
employed in the present study to describe configurational
entropy given as

S ¼ kB�
2x� 1

2

X

i

X

c

xc
i � ln x

c
i � xc

ið Þ
(

�x
X

i; j

yab
ij ln yab

ij � yab
ij

� �
þ x� 1ð Þ

)
(Eq 2)

where kB is the Boltzmann constant, x (2 in the two-
dimensional square lattice) the one half of the coordination

number, xi and yij are point and pair cluster probabilities,
respectively, and the superscript(s) designates the sublat-
tice(s). The derivation of Eq 2 has been amply demon-
strated in a previous publication[1] and is not repeated here.
Throughout this article, internal energy, entropy and free
energy are defined per lattice point.

The internal energy in the present study is assigned by
the nearest neighbor pair approximation and is written as

EðrÞ ¼ 1

2
� Z �

X

i;j

eijðrÞ � yab
ij ðEq 3Þ

where Z is the coordination number and r is the nearest
neighbor atomic distance which is equivalent to the lattice
constant of the square lattice. It is noted that the introduction
of the dependence of internal energy on the atomic distance
is essential to take into account the relaxation effects.
Hence, together with Eq 2, the configurational free energy is
given as

F ¼ x �
X

i; j

eijðrÞ � yab
ij

� kB � T
(
2x� 1

2

X

i

X

d

xd
i � ln xd

i � xd
i

� �

� x
X

i; j

yab
ij ln yab

ij � yab
ij

� �
þ x� 1ð Þ

)

ðEq 4Þ

where T is the temperature.
For the pair potential eij(r), the following Morse potential

is employed,

eMij ðrÞ ¼ C1 � 2C2 � exp �k � r � r0ð Þð Þ
þ C2 exp �2k � r � r0ð Þð Þ ðEq 5Þ

where M stands for the Morse potential, C1 and C2

determine the depth of the potential, r0 is the equilibrium
atomic distance in terms of the Wigner-Seitz radius and k
specifies the curvature at r0. The shape of the potential is
demonstrated later.

3. Temperature-Dependent Interaction Energy

It is not a trivial task to incorporate the lattice vibration
effects into the free energy. A common practice within the
first-principles calculation is to include the additional vibra-
tional free energy into the temperature-dependent effective
cluster interaction energies.[1,11,12] This can be performed
using the procedure based on the vibrational free energies
proposed by Moruzzi et al.[10] in the following manner.

Within the quasi-harmonic approximation of the Debye-
Grüneisen model, the vibrational free energy of an ordered
phase or a pure metal designated by n is given as

F
ðnÞ
vib ¼ E

ðnÞ
vibðr; TÞ � T � SðnÞvibðr; TÞ ðEq 6Þ
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where the vibrational energy, EðnÞvibðr; TÞ, and the vibrational
entropy, SðnÞvibðr; TÞ, are further written as

EðnÞvibðr; TÞ ¼
9

8
kB �HðnÞD þ 3kB � T � D

HðnÞD

T

 !
ðEq 7Þ

and

S
ðnÞ
vibðr; TÞ ¼ 3kB �

4

3
D

HðnÞD

T

 !"
� ln 1� exp �HðnÞD

T

 !( )#

ðEq 8Þ

where HðnÞD is the Debye temperature and D(x) is the Debye
function, and the first term of the vibrational energy in Eq 7
represents the zero-point energy. Together with the elec-
tronic energy contribution, E(n)(r), for the non-vibrational
lattice, the free energy of a phase n is written as

F
ðnÞ
vib ðr; TÞ ¼ EðnÞðrÞ þ E

ðnÞ
vibðr; TÞ � T � SðnÞvibðr; TÞ ðEq 9Þ

Then, Cluster Expansion[13] is performed on the set of
vibrational free energies fFðnÞvib ðr; TÞg of a selected set of
ordered compounds including pure metals,

FðnÞvib ðr; TÞ ¼
X

i

viðr; TÞ � nðnÞi ; ðEq 10Þ

where nðnÞi is the correlation function[1,14-16] for i-cluster
contained in the phase n. The set of correlation functions,
fnðnÞi g, and cluster probabilities {xi, yij,…} are related
through a linear transformation. Then, the effective cluster
interaction energies are given not only as a function of
atomic distance but also as a function of temperature, T,

viðr; TÞ ¼
X

n

FðnÞvib ðr; TÞ � n
ðnÞ
i : ðEq 11Þ

The total vibrational free energy of a given phase is,
therefore, written as

Fðr; TÞ ¼
X

i

viðr; TÞ � ni � kB � T � SC nif gð Þ ðEq 12Þ

where SC is the configurational entropy given by Eq 2. In
this scheme, vibrational contribution is effectively renor-
malized into the effective cluster interaction energies,
{vi(r, T)}, which proves to be quite useful and fits
coherently with the first-principles free energy formula.
Hence, the present model inherits the same scheme.

In the present free energy model, however, the internal
energy given by Eq 3 is not written in the form of cluster
expansion with effective cluster interaction energies, but as a
sum of the atomic pair interaction energies, eij(r). Hence, the
vibrational effects are to be renormalized into the atomic pair
interaction energies. This is achieved in the following way.

Corresponding to E(n)(r) in Eq 9 is the Morse potential in
the present study, and Eq 9 is rewritten as

F
ðnÞ
vib ðr; TÞ ¼ EðnÞðrÞ þ E

ðnÞ
vibðr; TÞ � T � SðnÞvib

¼ 2eMij ðrÞ þ EðnÞvibðr; TÞ � T � SðnÞvib ðEq 13Þ

where M stands for the Morse potential, and it should be
noted that i and j indicate A(B) and A(B) for pure metal
n = A(B) and A and B for the ordered phase n = AB,
respectively. It is worth pointing out that no like-pair
potentials are included in EðABÞ. This simplifies the entire
analysis. In order to renormalize F

nð Þ
vib r; Tð Þ in the temper-

ature-dependent pair interaction energy, eij(r, T), Eq 13 is
modified as

FðnÞvib ¼ 2eMij ðrÞ þ EðnÞvibðr; TÞ � T � SðnÞvib

¼ 2 eMij ðrÞ þ
1

2
EðnÞvibðr; TÞ � T � SðnÞvib

� �� �

¼ 2eijðr; TÞ (Eq 14)

4. Numerical Calculations

By substituting Eq 5, 7 and 8 into Eq 14, the explicit
form of eij(r, T) is obtained as

eijðr; TÞ ¼ CðnÞ1 � 2CðnÞ2 � exp �kðnÞ � r � rðnÞ0

� �� �

þ C
ðnÞ
2 exp �2kðnÞ � r � r

ðnÞ
0

� �� �

þ 1

2
�
 
9

8
kB �HðnÞD � kB � T � D

HðnÞD

T

 !

þ 3kB � T � ln 1� exp �HðnÞD

T

 !( )!

ðEq 15Þ

One of the essential difficulties of the present approach is
the determination of the Debye temperature. In the first-
principles calculations, as was described in the previous
section, the binding energy curve, E(n)(r), obtained by
electronic structure energy calculation is fitted into a Morse
potential, and the curvature and the asymmetry of the
potential curve uniquely determine the thermal properties of
a phase n including the Debye temperature and the
Grüneisen constant. In fact, it has been demonstrated[10]

that the Debye temperature and the Grüneisen constant are
related to the curvature k of a binding energy curve through

HD ¼ HDð Þ0�
r0
r

� �3c
ðEq 16Þ

where HDð Þ0 is the Debye temperature evaluated at the
equilibrium Wigner-Seitz radius and c is the Grüneisen
constant given by

HDð Þ0¼ 41:63
r0B

M

� �1=2

ðEq 17Þ

and

c ¼ kr
2

ðEq 18Þ
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where B the bulk modulus in kbar and r0 is given in atomic
unit. In order to apply this procedure, one needs atomic
mass M of the constituent elements, which is utterly
impossible to obtain from the present model. Moreover, in
the strict analysis, modification to the two-dimensional
system is indispensable. In view of the lack of these
considerations, the Debye temperature HDð Þ0 is assigned as
a parameter, which, in turns, enables us to perform a
systematic study of the dependence of order-disorder
transition temperature on the Debye temperature of the
constituent phases. Also, the volume (r) dependency of the
Grüneisen constant in Eq 18 is neglected and c0 evaluated at
the Wigner-Seitz radius r0 is employed as c in Eq 16.

In order to simplify the analysis, length scale is
normalized with respect to the Wigner-Seitz radius of A,

rðAÞ0 , and all the energy parameters, CðnÞ1 ; CðnÞ2 and kB �HðnÞD
are normalized by the Debye temperature of A,

kB � HðAÞD

� �

0
. Hence, the final expression of the interaction

energy is given as

eðnÞðr; TÞ ¼ CðnÞ1 � 2CðnÞ2 � exp �kðnÞ � r � rðnÞ0

� �� �

þ CðnÞ2 exp �2k � r � rðnÞ0

� �� �

þ 1

2
� 9

8
� sðnÞ2 þ s1 � D

sðnÞ2 � rðnÞ0

.
r

� �3c0

s1

0

B@

1

CA

0

B@

þ3s1 � ln 1� exp �
sðnÞ2 � rðnÞ0

.
r

� �3c0

s1

0

B@

1
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8
><

>:

9
>=

>;

1

CA

ðEq 19Þ

where the normalized energies eijðr; TÞ=kB � HA
D

� �
0
,

CðnÞ1 = HA
D

� �
0
and CðnÞ2 = HA

D

� �
0
are redefined as e(n)(r, T),

C
ðnÞ
1 and C

ðnÞ
2 , respectively, in Eq 19. Likewise, the normal-

ized lengths rðnÞ0 =rðAÞ0 , r=rðAÞ0 and kðnÞ � rðAÞ0 are redefined as

rðnÞ0 , r and k(n), respectively. Furthermore, s1 ¼ kB�

T=kB � HA
D

� �
0
and sðnÞ2 ¼ kB � HðnÞD

� �

0

	
kB � HA

D

� �
0
are nor-

malized temperature and normalized Debye temperature of a
phase n, which are the main variables in the analysis.

5. Results and Discussion

Shown in Fig. 1 are the atomic pair potentials for A-A,
A-B and B-B pairs assigned by the Morse potential given by
Eq 5. The parameters employed in the present study are
tabulated in Table 1. By setting C1 = C2, the bottom of the
potential curves of A-A and B-B is set to 0, which defines the
energy reference state. In order to stabilize the ordered
phase, the unlike-pair potential, A-B, is assigned to be
deeper than the like-pair potentials. These pair potentials
determine the ground state of the system without the lattice
vibration effects.

The calculated temperature dependence of LRO param-
eter, g(T), at a fixed composition of 50% is shown by a
solid line in Fig. 2. This indicates a typical second-order
transition behavior and the transition temperature,
st = 4.76, is determined as the temperature at which g(T)
falls 0.
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Fig. 1 Atomic potentials for A-A, A-B and B-B pairs assigned
by the Morse potential. The energy parameters are tabulated in
Table 1
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Fig. 2 Temperature dependences of long range order parameter,
g in Eq 1, at a fixed composition of 50%. Solid line corresponds
to the one without lattice vibration effects while solid and open
circles indicate the ones with vibrational effects. The Debye tem-
peratures, s2, corresponding to solid circles and open circles are
tabulated in Table 2

Table 1 Morse potential parameters employed
to calculate potential curves in Fig. 1

C1 C2 r0 k

A-A 1.00 1.00 1.00 1.66

A-B 1.06 1.08 1.03 1.66

B-B 1.00 1.00 1.05 1.66

Note that actual values employed for CðAÞ1 and CðAÞ2 in the calculations are

96.15 and other values of C1 and C2 are normalized by this value
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By repeating the same procedure for different composi-
tions, one can obtain a phase diagram. Shown in Fig. 3 by
cross marks is the calculated phase boundary without the
vibrational effects. The phase boundary is slightly asym-
metric around 50% and a disordered region is wider in the
B-rich region than in the A-rich region. This is due to the
shape of the Morse potential from which a smaller atom (A)
in the B-rich solution expends less energy than the opposite
case in the uniformly deformable lattice, which is a natural
consequence of the fact that the repulsive potential is steeper
than that of the attractive potential. Although the equilib-
rium lattice constants of A and B in the present study do not
differ appreciably (see Table 1), the asymmetry should be
more pronounced with a larger difference of atomic sizes in
the constituent atoms.

By keeping the same Morse potential parameters for the
calculations above, the lattice vibration effects are intro-
duced through temperature-dependent terms in Eq 19 with
the same Debye temperatures (sðnÞ2 ¼ 1:0) for all n = A, AB
and B (see Table 2). The temperature dependence of LRO
parameter at 50% and the entire phase boundary are shown
by solid circles in Fig. 2 and 3, respectively. One can clearly
see that the transition temperature decreases, indicating the
stabilization of the disordered phase. It is noted that such

preferential stabilization (destabilization) of the ordered
(disordered) phase is induced despite the fact that the
temperature-dependent terms of pair interaction energies are
the same for all the phases. This is explained by the lattice
softening effects in the following manner.

The atomic potentials at an elevated temperature (solid
line), for instance at s1 = 4.0, are compared with those
without the lattice vibration effects (broken lines) in Fig. 4.
One observes that the minimum of each potential shifts
toward the right-hand side, indicating thermal expansion.
The downward shifting is due to the vibrational entropy
effects. The other noticeable point is that the curvature at
the equilibrium distance of each curve, which manifests
the bulk modulus, becomes smaller, indicating the soften-
ing of the lattice. In fact, the curvature of A-A potential at
s1 = 4.0 is about 86% of that without the lattice vibration
effects.

The most primitive estimation of the transition temper-
ature, Tt, is attempted by the simple Bragg-Williams
approximation[17] (equivalent to the regular solution model)
which claims that the transition temperature is proportional
to the ordering energy defined as DEord ¼ eAA þ eBB�
2 � eAB. It is reasonable to assume that eAB takes minimum at
50%, and we define the corresponding atomic distance as
r�AB. Then, the ordering energy at 50% is given as

DEord 50%ð Þ
¼ eAA r�AB

� �
þ eBB r�AB

� �
� 2 � eAB r�AB

� �

¼ eAA r�AB
� �

� eAB r�AB
� �
 �

þ eBB r�AB
� �

� eAB r�AB
� �
 �

¼ DEA r�AB
� �

þ DEB r�AB
� �

(Eq 20)

where DEn r�AB
� �

is defined as enn r�AB
� �

� eAB r�AB
� �

(n = A or
B) which is equivalent to the distance between the bottom of
the A-B potential and the intersection of the vertical line
at r�AB with the potential curve enn(r). Hence, a decrease of
the curvature of both eAA(r) and eBB(r) at an elevated
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Fig. 4 Atomic pair potentials with and without lattice vibration
effects. Broken lines are a reproduction of Fig. 1 and indicate
the ones without lattice vibration effects. Solid lines are calcu-
lated at temperature s1 = 4.0 with parameters tabulated in
Table 2. s2 is the same for all n = A, AB and B. The dotted line
indicates the A-B pair potential calculated at s1 = 4.0 with the
same parameters except for the Debye temperature of AB,
s2 = 0.80

Table 2 Morse potential parameters and Debye
temperature s2 employed to calculate temperature
dependences of LRO in Fig. 2 and phase diagrams
in Fig. 3

C1 C2 r0 k s2

A 1.00 1.00 1.00 1.66 1.00

AB 1.06 1.08 1.03 1.66 1.00 (d)

0.93 (s)

B 1.00 1.00 1.05 1.66 1.00

d and s correspond to the same marks in Fig. 2 and 3
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Fig. 3 Phase boundaries calculated with and without lattice
vibration effects. Cross marks (9) correspond to the one without
lattice vibration effects, while open and solid circles are obtained
with lattice vibration effects. The Debye temperatures of the
ordered phase assigned for the calculations with lattice vibration
effects (open and solid circles) are tabulated in Table 2
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temperature due to the lattice vibration effects reduces both
DEA r�AB

� �
and DEB r�AB

� �
, resulting in a lower transition

temperature. A reduction of the curvature of A-A (B-B)
potential curve indicates that the energy expended to
accommodate B(A) atom in A(B)-rich solid solution is
lowered. This is a typical lattice vibration effect on phase
equilibria, and the reduction of the transition temperature by
the introduction of the lattice vibration effects reported in
the first-principles calculations is ascribed to this effect.

Shown in Fig. 4 by a dotted line is the A-B pair potential

calculated at s1 = 4.0 when sðABÞ2 is reduced to 0.8. Appar-
ently, the relative depth of the unlike pair is deepened and,
therefore, the stabilization of the ordered phase is expected.
As one observes in Fig. 2 and 3 by open circles which are

calculated for sðABÞ2 ¼ 0:93 � sðAÞ2 ¼ sðBÞ2

� �
; the transition

temperature increases and the phase boundary shifts
upward. The dependence of the transition temperature at

50% on sðABÞ2 is further summarized in Fig. 5. It can be
clearly seen that the transition temperature increases mono-
tonically with decreasing Debye temperature of AB.
According to the vibrational entropy formula given in
Eq 8, both the Debye function and the second logarithmic
term monotonically decrease with decreasing Debye tem-

perature, HðnÞD ; at a constant temperature T. Hence, with an
increase of temperature, the vibrational free energy
decreases in favor of a phase with a lower Debye
temperature. This is the significance of the stabilization of
the ordered phase realized in the present study.

In fact, most discussions of lattice vibration effects on
phase equilibria are centered around the stabilization of a
disordered solid solution enhanced by the lattice softening
which renders easier accommodation of atomic species of
different sizes. However, when the Debye temperature of an
ordered phase is lower than that of pure phases, the
stabilization of an ordered phase is expected, which oppo-
sitely results in the increase of the transition temperature.

Finally, it is suggested that the technical significance of
the present study is that in the choice of a finite set of
ordered phases in the Cluster Expansion given by Eq 9-11,

an extra care should be taken in the selection of the
hypothetical ordered phases.

Acknowledgment

The present work was partly supported by Next Gener-
ation Supercomputing Project, Nanoscience Program,
MEXT, Japan.

References

1. T. Mohri, Statistical Thermodynamics and Model Calcula-
tions, Alloy Physics, Chap. 10 and references therein,
W. Pfeiler, Ed., Wiley-VCH, 2007, p 525-588

2. R. Kikuchi, A Theory of Cooperative Phenomena, Phys. Rev.,
1951, 81, p 998-1003

3. R. Kikuchi, Space is Continuous-Continuous-Displacement
Treatment of Phase-Separating Diagrams, J. Phase Equilib.,
1998, 19, p 412-421

4. R. Kikuchi and A. Beldjenna, Continuous Displacement of
Lattice Atoms, Physica A, 1992, 182, p 617-634

5. R. Kikuchi and K. Masuda-Jindo, Calculation of Alloy Phase
Diagrams by Continuous Cluster Variation Method, Comp.
Mater. Sci., 1999, 14, p 295-310

6. H. Uzawa and T. Mohri, Calculation of Short-Range-Order
Diffuse Intensity for a Two Dimensional Square Lattice Within
Cluster Variation Method, Mater. Trans., 2001, 42, p 422-424

7. H. Uzawa and T. Mohri, Continuous Displacement Cluster
Variation Method in Fourier Space, Mater. Trans., 2002, 43,
p 2185-2188

8. T. Mohri, Theoretical Investigation of Phase Equilibria by the
Continuous Displacement Cluster Variation Method, Int. J.
Mater. Res., 2009, 100, p 301-307

9. A. Zunger, First-Principles Statistical Mechanics of Semicon-
ductor Alloys and Intermetallic Compounds, Statics and
Dynamics of Alloy Phase Transformations, P.E.A. Turchi
and A. Gonis, Ed., Plenum Press, New York, 1994, p 361-419

10. V. Moruzzi, J.F. Janak, and K. Schwarz, Calculated Thermal
Properties of Metals, Phys. Rev. B, 1988, 37, p 790-799

11. T. Mohri and Y. Chen, First-Principles Calculation of L10-
Disorder Phase Boundary in Fe-Pd System, Mater. Trans.,
2004, 45, p 1478-1484

12. T. Mohri and Y. Chen, First-Principles Investigation of
L10-Disorder Phase Equilibria of Fe-Ni, -Pd, and -Pt Binary
Alloy Systems, J. Alloys Compd., 2004, 383, p 23-31

13. J.W. Connolly and A.R. Williams, Density-Functional Theory
Applied to Phase-Transformations in Transition-Metal Alloys,
Phys. Rev. B, 1983, 27, p 5169-5172

14. J.M. Sanchez and D. de Fontaine, The Fee Ising Model in
the Cluster Variation Approximation, Phys. Rev. B, 1978, 17,
p 2926-2936

15. J.M. Sanchez, F. Ducastelle, and D. Gratias, Generalized
Cluster Description of Multicomponent Systems, Physica
(Utrecht), 1984, 128A, p 334-350

16. T. Mohri, J.M. Sanchez, and D. de Fontaine, Short-Range
Order Diffuse Intensity Calculations in the Cluster Variation
Method, Acta Metall., 1985, 33, p 1463-1474

17. W.L. Bragg and E.J. Williams, The Effect of Thermal
Agitation on Atomic Arrangement in Alloys, Proc. R. Soc.
Lond. A, 1934, 145, p 699-730

0.0 

2.0 

4.0 

6.0 

8.0 

10.0 

12.0 

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

N
o

rm
al

iz
ed

 t
ra

n
si

ti
o

n
 t

em
p

er
at

u
re

Normalized Debye temperature

Fig. 5 Dependence of the transition temperature st on the
Debye temperature of AB, sðABÞ2 , at a fixed composition of 50%

Section I: Basic and Applied Research

558 Journal of Phase Equilibria and Diffusion Vol. 30 No. 5 2009


	Outline placeholder
	Abs1
	Sec1
	Sec2
	Sec3
	Sec4
	Sec5
	Ack
	Bib1



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


